Jump to content

User:Genetic endowment/sandbox

From Wikipedia, the free encyclopedia

[1]

Pharmacology

[edit]

Pharmacoldynamics

[edit]
Binding profile[2]
Site Ki (nM)
GABAA Benzodiazepine Type Ic 25
GABAA Benzodiazepineb 26
GABAA α1Tooltip Gamma-aminobutyric acid receptor subunit alpha-1 27
GABAA α1β1γ2Tooltip GABA A Alpha1 Beta1 Gamma2 111.9
GABAA α1β3γ2Tooltip GABA A Alpha1 Beta3 Gamma2 41
GABAA α2Tooltip Gamma-aminobutyric acid receptor subunit alpha-2 160
GABAA α2β1γ2Tooltip GABA A Alpha2Beta1Gamma2 760.6
GABAA α2β2γ2Tooltip GABA A Alpha2Beta2Gamma2a 765
GABAA α3Tooltip Gamma-aminobutyric acid receptor subunit alpha-3 380
GABAA α3β1γ2Tooltip GABA A Alpha3 Beta1 Gamma2 2149.5
GABAA α4β3γ2Tooltip GABA A Alpha4 Beta3 Gamma2 > 10,000
GABAA α5β1γ2Tooltip GABA A Alpha5 Beta1 Gamma2 > 10,000
GABAA α6β3γ2Tooltip GABA A Alpha6 Beta3 Gamma2 > 10,000
Values are Ki (nM). The smaller the value, the more strongly the drug binds to the site. All values are for human receptors unless otherwise specified. aHEK293 bRat's cerebral cortex. c Rat's hippocampus. Additional sources:[3][4]

Recombinant receptor

[edit]

A 'Recombinant Receptor' refers to receptors formed by combining different subunits such as α, β, and γ, which exhibit unique properties distinct from receptors with single subunit types.[5]

ttps://www.sciencedirect.com/topics/neuroscience/recombinant-receptor

[6]

Pharmacology

[edit]

Pharmacology

[edit]
Binding profile[7]
Site Ki (nM)
5-HT2Aa 17
H1 0.039811
Values are Ki (nM). The smaller the value, the more strongly the drug binds to the site. All values are for human receptors unless otherwise specified. aRat's cerebral cortex.


[8][9][10]

CMC (China Magnetic Corporation)

[11]

[12]

[13]

[14]

[15]

References

[edit]
  1. ^ Bouchette, Daniel; Akhondi, Hossein; Patel, Preeti; Quick, Judy (2024). "Zolpidem". StatPearls. Treasure Island (FL): StatPearls Publishing. PMID 28723037.
  2. ^ Roth BL, Driscol J. "PDSP Ki Database". Psychoactive Drug Screening Program (PDSP). University of North Carolina at Chapel Hill and the United States National Institute of Mental Health. Retrieved 23 August 2024.{{cite web}}: CS1 maint: url-status (link)
  3. ^ Herman, John H.; Sheldon, Stephen H. (2005). "Pharmacology of Sleep Disorders in Children". Principles and Practice of Pediatric Sleep Medicine. Elsevier. p. 327–338. doi:10.1016/b978-0-7216-9458-0.50033-7. ISBN 978-0-7216-9458-0. On recombinant receptors, zolpidem displays a high affinity for only the α1-GABAA receptors and an intermediate affinity for α2- and α3-GABAA receptors. It does not bind to α5-GABAA receptors. The sedative action of zolpidem is exclusively mediated by α1-GABA receptors.
  4. ^ Carling, Robert W.; Madin, Andrew; Guiblin, Alec; Russell, Michael G. N.; Moore, Kevin W.; Mitchinson, Andrew; Sohal, Bindi; Pike, Andrew; Cook, Susan M.; Ragan, Ian C.; McKernan, Ruth M.; Quirk, Kathleen; Ferris, Pushpinder; Marshall, George; Thompson, Sally Ann; Wafford, Keith A.; Dawson, Gerard R.; Atack, John R.; Harrison, Timothy; Castro, José L.; Street, Leslie J. (2005-11-01). "7-(1,1-Dimethylethyl)-6-(2-ethyl-2 H -1,2,4- triazol-3-ylmethoxy)-3-(2-fluorophenyl)- 1,2,4-triazolo[4,3- b ]pyridazine: A Functionally Selective γ-Aminobutyric Acid A (GABA A ) α2/α3-Subtype Selective Agonist That Exhibits Potent Anxiolytic Activity but Is Not Sedating in Animal Models". Journal of Medicinal Chemistry. 48 (23): 7089–7092. doi:10.1021/jm058034a. ISSN 0022-2623.
  5. ^ Sieghart, W; Fuchs, K; Tretter, V; Ebert, V; Jechlinger, M; Höger, H; Adamiker, D (1999). "Structure and subunit composition of GABAA receptors". Neurochemistry International. 34 (5): 379–385. doi:10.1016/S0197-0186(99)00045-5.
  6. ^ Bhandari, Priyanka; Sapra, Amit (2024). "Zaleplon". StatPearls. Treasure Island (FL): StatPearls Publishing. PMID 31855398.
  7. ^ Roth BL, Driscol J. "PDSP Ki Database". Psychoactive Drug Screening Program (PDSP). University of North Carolina at Chapel Hill and the United States National Institute of Mental Health. Retrieved 23 August 2024.{{cite web}}: CS1 maint: url-status (link)
  8. ^ Tashiro, Manabu; Mochizuki, Hideki; Sakurada, Yumiko; Ishii, Kenji; Oda, Keiichi; Kimura, Yuichi; Sasaki, Toru; Ishiwata, Kiichi; Yanai, Kazuhiko (2006). "Brain histamine H1 receptor occupancy of orally administered antihistamines measured by positron emission tomography with 11C-doxepin in a placebo-controlled crossover study design in healthy subjects: a comparison of olopatadine and ketotifen". British Journal of Clinical Pharmacology (Primary research). 61 (1): 16–26. doi:10.1111/j.1365-2125.2005.02514.x. ISSN 0306-5251. PMC 1884984. PMID 16390347. First-generation antihistamines, such as ketotifen and d-chlorpheniramine, can easily penetrate the blood–brain barrier, and tend to occupy a large proportion of postsynaptic H1Rs (>50%) [4–8].
  9. ^ Ramírez-Ponce, María Pilar; Flores, Juan Antonio; Barrella, Lorenzo; Alés, Eva (2023). "Ketotifen is a microglial stabilizer by inhibiting secretory vesicle acidification". Life Sciences. 319: 121537. doi:10.1016/j.lfs.2023.121537. Thus, ketotifen, a safe drug that crosses the blood-brain barrier, has been described to improve patients with multiple sclerosis [53], a neurodegenerative disease in which both MCs and microglia play a crucial role.
  10. ^ Polnariev, Alan (2016). "Antihistamines (H1 Receptor Antagonists)". Side Effects of Drugs Annual. Vol. 38. Elsevier. p. 143–151. doi:10.1016/bs.seda.2016.07.008. ISBN 978-0-444-63718-5. Ketotifen is a fast acting non-competitive, second-generation H1 histamine receptor antagonist and mast cell stabilizer which demonstrates greater permeability across the blood–brain barrier than newer agents in the therapeutic class [43A].
  11. ^ Kovács, Szilárd D. (2023-11-30). "Suggestion for Determining Treatment Strategies in Dental Ethics". Journal of Bioethical Inquiry. 21 (2). Springer Science and Business Media LLC: 373–379. doi:10.1007/s11673-023-10310-2. ISSN 1176-7529.
  12. ^ Tabatabaei, Fahimeh; Tayebi, Lobat (2022). "Ethics in Dental Research". Research Methods in Dentistry. Cham: Springer International Publishing. p. 151–159. doi:10.1007/978-3-030-98028-3_7. ISBN 978-3-030-98027-6.
  13. ^ Serra, Mônica da Costa; Fernandes, Clemente Maia S. (2016). "Dental Ethics". Encyclopedia of Global Bioethics. Cham: Springer International Publishing. p. 829–836}. doi:10.1007/978-3-319-09483-0_137. ISBN 978-3-319-09482-3. Informed Consent, Clarification, and Autonomy. Professional Secrecy. Cross infection (i.e., contaminating patients under dental treatment) is a very serious problem and must be avoided. Usually communication of infectious diseases to health authorities, collaboration with justice, expert work, judicial recovery of professional fees, and denunciation of violence cases aren't considered professional secrecy disclosure.
  14. ^ Serra, Mônica da Costa; Fernandes, Clemente Maia S. (2016). "Dental Ethics". Encyclopedia of Global Bioethics. Cham: Springer International Publishing. p. 829–836}. doi:10.1007/978-3-319-09483-0_137. ISBN 978-3-319-09482-3. The professional has to clarify the patient about treatment options and their characteristics, to obtain informed consent. But the patient trusts the professional, because often he or she has no technical knowledge to assess the quality of the dental care. The relationship between the dentist and his patient is mainly a trusting relationship.
  15. ^ Serra, Mônica da Costa; Fernandes, Clemente Maia S. (2016). "Dental Ethics". Encyclopedia of Global Bioethics. Cham: Springer International Publishing. p. 829–836}. doi:10.1007/978-3-319-09483-0_137. ISBN 978-3-319-09482-3. it is very important to train adequately the dental team to listen to the patients, to treat them well, and to communicate adequately. Sometimes patients do not tell the dentist about their dissatisfaction, but tell a dental assistant, for example, or comment on the problem with another patient in the reception room. The dental team has to be prepared not only for technical work, but it also has to have good communication skills.